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Highlights
• The shape of hysteresis loops provides fundamental properties of

the dynamical system it comes from. The hysteresis loops in the
examples below are generated in MATLAB.

• We also create hysteresis loops through the tactile medium of yarn,
and highlight the hysteretic property of path dependence using dif-
ferent coloured yarn. The result is a unique tessellation pattern.

• Work done is a multidisciplinary project involving fundamental con-
cepts from engineering, mathematics and the arts.

What is Hysteresis?
Hysteresis is a phenomenon occurring in dynamical systems that typi-
cally model natural and/or engineering applications [1, 2, 3, 4, 5]. One
way to determine whether a dynamical system exhibits hysteresis is
by introducing a periodic input into the system and then plotting the
outputting behaviour of the system as the input varies.

If a simple closed curve appears and persists in this input-output map
as the frequency of the periodic input approaches zero, the dynamical
system is said to exhibit hysteresis [4]. Such a curve is called a hys-
teresis loop of the dynamical system. Since a hysteresis loop cannot be
described by a function, systems that exhibit hysteresis are difficult to
analyze. If the closed curve does not persist as the frequency of the pe-
riodic input goes to zero, then the system does not exhibit hysteresis.
In this case, the resulting curve can be described by a function. See
Figure 1.
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Figure 1: (a) A loop is formed when the output follows different paths as the in-
put varies. This has been emphasized through the use of two different colours in the
hysteresis loop. Consequently, hysteresis is synonymous with the idea of path depen-
dence. (b) When a looping behaviour does not persist in the input-output map, this
means the closed simple curve degenerates into a curve of a function, and indicates
the system does not exhibit hysteresis.

Examples of Hysteresis Loops
Example 1: Consider a damped nonlinear second-order differential
equation

ÿ(t) + cẏ(t) + k
(
y(t)− y3(t)

)
= 0. (1)

If the periodic input
u(t) = sin(ωt) (2)

is introduced into (1), this leads to

ÿ(t) + cẏ(t) + k
(
y(t)− y3(t)

)
= u(t). (3)

Figure 2 depicts the input-ouput curves of (1) with periodic input (2).
From the figure, we see the appearance of simple closed curves and
they persist even for small frequencies, ω, which indicates (1) exhibits
hysteresis. Notice the shape of the hysteresis loop converges to a stable
shape as ω approaches 0.
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(a) ω = 1
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(b) ω = 0.1
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(c) ω = 0.01
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(d) ω = 0.001
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Figure 2: Input-output curves of (1) with c = 15, k = −1 and initial condition
y(0) = 1, ẏ(0) = 0 indicates hysteresis loops persist even for small ω.

It turns out this system has three equilibria. This can be verified by
rewriting (1) into first-order form and setting the derivatives to zero.
The eigenvalues of (1) indicate two of the equilibria are stable and the
third unstable. It is this scenario that causes the rapid transition (in
other words, sharp jumps between the bottom and top of the hystere-
sis loop) displayed in Figure 2. In particular, as the input varies the
system will tend to stay near a stable equilibrium (flat part of the hys-
teresis loop); however, if the input varies enough such that this causes
the other stable equilibrium to be closer, the system will “jump” to the
closer stable equilibrium. For a discussion of the relationship between
hysteresis and stable equilibria, see [3].
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Figure 3: Input-output curves of (4) with c = 15 and initial condition y(0) =
0, ẏ(0) = 0 indicates hysteresis loops persist even for small ω.

Example 2: Suppose we let k = 0 in (1), which leads to the linear
second-order differential equation

ÿ(t) + cẏ(t) = 0. (4)

As in the previous example, Figure 3 depicts the input-output curves
of (4) with periodic input (2). The figure shows that as ω goes to zero,
simple closed curves appear and persists, indicating (4) is hysteretic.
The appearance of jumps in the hysteresis loops (as in Example 1)
does not happen in this case because this system has a continuum of
stable equilibria, which causes the shape of the hysteresis loop to be
smooth. For an example of a partial differential equation exhibiting
smooth hysteresis loops, see [2].

Crocheting Hysteresis Loops
Due to the rotational symmetry in hysteresis loops, they can be used to
form a unique tessellation pattern as depicted in Figure 4.

Figure 4: Tessellation pattern made of hysteresis loops.

The hysteresis loops are constructed from crocheting yarn, and this
crochet pattern is new. Step-by-step images for crocheting a single
hysteresis loop is noted in Figures 5 to 10. Creating hysteresis loops
in this tactile way is a unique and artistic approach for exploring the
shape of hysteresis loops.

Figure 5: The foundation chain con-
sists of 22 stitches using worsted weight
(medium) yarn and a J/6mm or H/6.5mm
sized hook.

Figure 6: The first row consists of single
crochets, double crochets and half double
crochets. This step constructs half of the
interior of the hysteresis loop.

Figure 7: The second row is created on
the other side of the foundation chain and
consists of single crochets, double cro-
chets and half double crochets. This step
constructs the second half of the interior
of the hysteresis loop with the foundation
chain in the middle.

Figure 8: The first border consists of 23
single crochets along half the perimeter of
the hysteresis loop.

Figure 9: The second border consists
of 23 single crochets along the remaining
half of the perimeter of the hysteresis loop.
The two colours reinforce the notion of
path dependence in hysteresis.

Figure 10: Cut yarn as needed and using
a tapestry needle, weave in yarn ends to
finish. The result is a crocheted hysteresis
loop that is 15cm corner-to-corner, 13cm
tall and 11cm wide. To form a tessellation
pattern as in Figure 4, stitch the individual
crocheted hysteresis loops together by fit-
ting them next to one another so that there
are no gaps and no overlaps.

Future Avenues
• Multiple definitions for hysteresis currently exist. Ideally, there

should be one unifying rigorous definition for hysteresis.

• All the hysteresis loops presented here are closed simple curves.
This need not be the case [5] and exploring non-simple closed curves
could lead to more identifying properties of the dynamical system.

• Exploring further symmetries in the shape of hysteresis loops could
lead to additional tessellation patterns.
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